PRESSURE DISTRIBUTION ALONG THE RADIUS OF
EDDY CONTACT ELEMENTS OF
MASS-TRANSFER EQUIPMENT

A. M. Shamsutdinov and A. F. Makhotkin UDC 66.015,23.048

The rotational motion of a gas produces an appreciable pressure gradient along the radius of
rotation. Equations are derived that describe the pressure distribution in agreement with the
experimental data.

One of the ways to increase the efficiency of mass transfer is to increase the multiplicity of dispersal
of the liquid. At the instant of formation of the drops and at the time of their break up the mass transfer is
several times larger than during filmy flow of the liquid or in the case of flying drops. In direct-flow eddy
equipment with tangential vortex generators the liquid is subjected to multiple dispersal due to the interaction
of the liquid particles among themselves and with the elements of the vortex generator. However, in spite of
its good efficiency their extensive use is held up due to a lack of computation techniques.

The rotational motion of a gas in eddy contact elements produces appreciable pressure gradients. The
existing techniques of computing the distribution of static pressure of twisted gas flows are based on the
assumption that the pressure is equal to the pressure of the medium in which the flow occurs, at the stage
when the tangential component of the velocity reaches its saturation value [1], or they are based on the change
in the heat content in the computation of highly twisted diaphragmed flows [2]. However, experience shows
that these premises are not valid for the eddy contact elements of mass-transfer instruments [3]. Inthepres-
ent work an attempt is made to obtain a computational formula for the distribution of static pressure along
the radius of rotation of a single-phase flow in contact elements with ftangential vortex generators.

Experiment shows [3] that the axial pressure gradients are small compared to the radial gradients;
therefore, we shall consider a two~dimensional motion. Inthis case the Euler equation is written in the fol-
lowing form:
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We shall integrate Eq. (1) for the boubndary conditions r = rin, Wy = Wyin, and obtain the law of potential
flow Wyr = WginT'in.

It is evident from this equation that the velocity of the gas near the axis of rotation must be infinitely
large, which corresponds to absolute vacuum. In view of the physical impossibility of such a phenomenon,
the azimuthal velocity of the twisted flow increases from radius rin to some radius ry; and attains its maxi-
mum f1], i.e., the region of potential flow:

. @)

In the region adjacent to the axis the azimuthal velocity of the gas decreases to zero, i.e., the motion
occurs in accordance with the law of motion of a solid body

p— . -~
Wor=const; r,<<r<{n,
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r

and rm depends on the coefficient of twisting [3,4].
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Fig. 1 - Fig. 2
Fig. 1. Eddy contact element with tangential
vortex generators.-

Fig. 2. Pressure distribution along the radius
of the eddy contact element with tangential vortex
generators.

For contact elements with tangential vortex generators a semiempirical dependence is obtained in [3];
in our case this dependence can be written as

- 0.35rip
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where A is the coefficient of twisting of the flow.
We integrate Eq. (2) for the first region under the condition that P = Pjp, Wo=Wgp in; Wr=Wry jnfor r=rju:
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An integration of Eq. (2) for the second region in the general form gives
p _ Wf W(?: in fizn 2 8
o =T T g ° rt+C. (6)

The constant of integration C is determined from the condition of conjugacy of the regions of potential

and quasisolid rotation:
- .
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We take the distribution of the radial velocity along the radius as Wy = —(8/r) in the first region and
Wr = —Ar in the second region [5]; here 6 and A are constants.

We shall use the notation r/rin =T and write Eqs. (56) and (7) in dimensionless form:

for the first region,
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When the gas enters along the tangent to the cylindrical body of revolution (Fig. 1) W%. in < W(zp in» i.e., the
terms containing W%. in/W%n can be neglected.
We take Wyin = Wip and for the first region we finally get

P—P, _ Py—P, 1

- —— 1, 10)
0.50W,, 050Wi 72 * (
and for the second region we have
P—P, Py —P, 1/ 7 )
= — = 2— — 1. 11
0.50W,) 0.50W7, m L rmd + a1)

The curve for the dependence of the dimensionless pressure on the dimensionless radius, computed from
Egs. (10) and (11) for the conditions

,P_irggio_ —475, A= 107,
O'SPWin

is shown in Fig. 2 (curve 1). Curve 2 in this figure is the experimentally obtained curve [3] for the same con-
ditions.

It is evident from this figure that the disagreement between the computed and experimental curves is
small except in the region near the axis.

The experimental determination of the pressure distribution was carried out with a five-channel spheri-
cal probe. The disagreement in the region near the axis can apparently be explained by the difficulty en-
countered in measurements by the five-channel spherical probe in the region near the axis of rotation.

NOTATION

p, gas density, kg/ma; r, ¢, z, cylindrical coordinates, m; Wy, Wy, velocily vector projections on
the coordinate axes, m/sec; Win, gas velocity at the entrance to the eddy contact element, m/sec; r, time;
sec; P, pressure, N/m?; rin, radius of the circle inscribed in the eddy contact element, m; rpm, radius of
the circle on which the tangential component attains its maximum value, m; A, coefficient of twisting or the

ratio of the area of the input loop to the area of the exit cross section of the contact element; 6, A, constants;
T = r/rj,, dimensionless radius.
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